Accumulation of heavy metals in agricultural soils is instigated by industrial and other human activities such as mining, smelting, cement-pollution, energy and fuel production, power transmission, traffic activities, intensive agriculture, sludge dumping and melting operations. Plants received heavy metals from soils through ionic exchange, redox reactions, precipitation-dissolution, and so on. Which implies that the solubility of trace elements based on factors like minerals in the soil (carbonates, oxide, hydroxide etc.), soil organic matter (humic acids, fulvic acids, polysaccharides and organic acids), soil pH, redox potential, content, nutrient balance, other trace elements concentration in soil, physical and mechanical characteristics of soil, soil temperature and humidity, and so on. In this study, the soil-edible plant and soil-water Transfer Factor (TF) for various metals showed that the TF values differed slightly between the locations. On soil-edible plant transfer, the mean TF for different heavy metals in soil-edible plants decreased in the following order: As (0.6) mg/kg > Cd (0.1) mg/kg > Cr (0.06) mg/kg > Pb (0.003) mg/kg > Ni (0.001) mg/kg. The total TF for different location decreases in the following order: Barkin Ladi (1.0) mg/kg > Jos South and Jos East (0.7) mg/kg > Bassa and Mangu (0.6) mg/kg. On soil-water transfer, the mean TF for different heavy metals in soil-edible plants decreased in the following order: Cd (0.001) mg/l > As (0.0007) mg/l > Cr (0.0005) mg/l > Pb (0.0001) mg/l and Ni (0.0001) mg/l. The total TF for different location decreases in the following order: Jos South (0.003) mg/kg > Barkin Ladi, Bassa, Jos East and Mangu (0.002) mg/kg. Based on the findings of this study, it can be concluded that the water and edible plants in the study area are good for public consumption, even though, regular checking of heavy metals in the study area is recommended.