Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Climate change is becoming an important driver of biodiversity loss by altering the habitat, distribution and interspecific relationships of species. Japanese yew (Taxus cuspidata) is a first class protected plant in China, which has important ecological significance and occupies a certain position in the feeding habit of wapiti (Cervus elaphus) and Siberian roe deer (Capreolus pygargus). Due to human and animal damage, the number of Japanese yew has gradually decreased. Therefore, understanding the potential distribution of Japanese yew and the suitable areas for deer to browse on it under climate change will help to further protect these three species in Northeast China, especially migrate to more suitable areas in different scenarios in the future. From July 2021 to July 2024, we collected the information of species distribution and the variables associated with the species’ ecological limits in Muling National Nature Reserve to cross-reflect the current and future distribution and feeding area of the two species to assess each other’s impacts with Maximum entropy model (MaxEnt). The results showed that under the SSP2-4.5 and SSP5-8.5 scenarios, feeding pressure, driest quarter precipitation (BIO17) and seasonal temperature variation coefficient (BIO4) were the main variables affecting the distribution of Japanese yew, and the driest quarter precipitation (BIO17) and annual precipitation (BIO12) were the main variables affecting wapiti and Siberian roe deer foraging them. Under SSP2-4.5 and SSP5-8.5 scenarios, the suitable area of Japanese yew and the feeding area of the two species of deer gradually decreased from 2041 to 2100. Compared with wapiti, Siberian roe deer has a greater impact on the distribution range of Japanese yew, and the suitable feeding area is wider. It is expected that the potential centroid of Japanese yew, wapiti and Siberian roe deer will migrate to higher latitudes in the future. These findings provide a scientific basis for the reserve to develop relevant measures and plans and effectively protect the three species.
Climate change is becoming an important driver of biodiversity loss by altering the habitat, distribution and interspecific relationships of species. Japanese yew (Taxus cuspidata) is a first class protected plant in China, which has important ecological significance and occupies a certain position in the feeding habit of wapiti (Cervus elaphus) and Siberian roe deer (Capreolus pygargus). Due to human and animal damage, the number of Japanese yew has gradually decreased. Therefore, understanding the potential distribution of Japanese yew and the suitable areas for deer to browse on it under climate change will help to further protect these three species in Northeast China, especially migrate to more suitable areas in different scenarios in the future. From July 2021 to July 2024, we collected the information of species distribution and the variables associated with the species’ ecological limits in Muling National Nature Reserve to cross-reflect the current and future distribution and feeding area of the two species to assess each other’s impacts with Maximum entropy model (MaxEnt). The results showed that under the SSP2-4.5 and SSP5-8.5 scenarios, feeding pressure, driest quarter precipitation (BIO17) and seasonal temperature variation coefficient (BIO4) were the main variables affecting the distribution of Japanese yew, and the driest quarter precipitation (BIO17) and annual precipitation (BIO12) were the main variables affecting wapiti and Siberian roe deer foraging them. Under SSP2-4.5 and SSP5-8.5 scenarios, the suitable area of Japanese yew and the feeding area of the two species of deer gradually decreased from 2041 to 2100. Compared with wapiti, Siberian roe deer has a greater impact on the distribution range of Japanese yew, and the suitable feeding area is wider. It is expected that the potential centroid of Japanese yew, wapiti and Siberian roe deer will migrate to higher latitudes in the future. These findings provide a scientific basis for the reserve to develop relevant measures and plans and effectively protect the three species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.