“…Other compounds have shown antiapoptotic effects in several animal models of ocular excitotoxicity. Between them, it is necessary to highlight I) apelin-36 and apelin-17 involved on the activation of Akt and ERK1/2 signaling pathways required for neuronal survival and inhibition of apoptosis in the retina [68], II) cannabinoids via a mechanism involving the CB1 receptors, the PI3K/Akt and MEK/ERK1/2 signaling pathways [69], III) capsaicin, a transient receptor potential vanilloid type1 agonist that activates opioid receptors, calcitonin gene-related peptide receptor and the tachykinin NK1 receptor involved in the protective effect against the NMDA receptor induced neuronal death [70], IV) pituitary adenylate cyclase-activating polypeptide through phosphatidylcholine-specific PLC pathway and cAMP production [71], V) compounds acting on adenosine A 3 receptor that attenuates the rise in calcium in RGC after activation of glutamate and P2X receptors protecting retinal cells, particularly RGC [72], VI) geranylgeranylacetone involved on the reduction in the activities of caspase-9 and -3, achieving protective results using a normal tension glaucoma mouse model which lacks GLAST [73], VII) CYM-5442 a known sphingosine 1-phosphate receptor agonist that administrated systemically in rats protected RGC from apoptotic death and preserve neuronal function after ET-1 induced RGC loss [19], VIII) adamantane derivatives such as memantine that blocks excessive activation of NMDARs without disrupting normal activity and has recently demonstrated significant preservation of RGCs density in a rodent ocular model of ocular hypertension when administrated in PLGA-polyethylene glycol (commonly PLGA-PEGylated) biodegradable nanoparticles [25], IX) tetramethylpyrazines, commonly known as TMPs, compounds able to block L-type voltage-gated calcium channels [7], X) tranylcypromine, a major lysine-specific demethylase 1 (LSD-1) and monoamine oxidase (MAO) inhibitor, that enhances expression of p38 MAPK and KEGG pathway genes [74], XI) melatonin, an autocrine or paracrine neuromodulator that regulates the local circadian physiology, that can be an effective antioxidant and antiapoptotic compound in the retina, acting as a direct and indirect free radical scavenger [75], XII) serotonin receptor (5-HT1A) agonists via the inhibition of cAMP-PKA signaling pathway that modulates GABAergic presynaptic activity [76], XIII) mTOR pathway stimulating APIs such as ciliary neurotrophic factors, lipopeptide N-fragment osteopontin mimic or lipopeptide phosphatase tension homologue inhibitors [77] or XIV) curcumin that modulates NMDA receptor subunit composition [78]. Finally, compounds with dual mechanism of action could be of special interest in multifactorial diseases as those related with RGC loss.…”