Non-small cell lung cancer (NSCLC) patients with activating epidermal growth factor receptor (EGFR) mutations initially respond well to the EGFR tyrosine kinase inhibitors (TKIs) erlotinib and gefitinib. However, clinical efficacy is limited by the development of resistance. In most cases, this resistance is in the form of the T790M mutation. Here, we report the design, synthesis and biochemical evaluation of a novel series of irreversible EGFR tyrosine kinase inhibitors (EGFR-TKIs) that are derived from the anilinoquinazoline scaffold. Guided by molecular modeling, this series of analogs was evolved to target a cysteine residue in the ATP binding site via covalent bond formation and to achieve high levels of anti-tumor activity in cell cultures and in xenografts. The most promising compound 13c ((E) –N - (4 - (4 - (3-fluorobenzyloxy) -3- chlorophenylamino) -7-ethoxyquinazolin-6-yl) -3- ((S) -pyrrolidin-2-yl)acrylamide, which we named Transtinib) displayed strong anti-proliferative activity against the H1975 and A431 cell lines with IC50 values of 34 nM and 62 nM, respectively. In xenograft models, Transtinib significantly decreases tumor size for a prolonged period of time. These results suggest that Transtinib is a potential cancer therapeutic drug lead for the inhibition of mutant EGFR to overcome the development of resistance.