2012
DOI: 10.1134/s0038094612040053
|View full text |Cite
|
Sign up to set email alerts
|

Potential of a gaussian ring. A new approach

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
6
0
2

Year Published

2014
2014
2023
2023

Publication Types

Select...
7

Relationship

2
5

Authors

Journals

citations
Cited by 20 publications
(8 citation statements)
references
References 1 publication
0
6
0
2
Order By: Relevance
“…where is the height of the test particle above the equatorial plane. The remaining coefficients and in potential (11) are equal to (12) The quantity in ( 12) is the volume-averaged radius of the body.…”
Section: Azimuthally Averagedmentioning
confidence: 99%
See 1 more Smart Citation
“…where is the height of the test particle above the equatorial plane. The remaining coefficients and in potential (11) are equal to (12) The quantity in ( 12) is the volume-averaged radius of the body.…”
Section: Azimuthally Averagedmentioning
confidence: 99%
“…The mass element of such a ring in an angular interval is (6) where is the angle of the true anomaly and is the eccentricity of the orbit. In the final analytical form, the Gaussian ring potential was found in [11] (see also [12]). In [13], the problem of the mutual energy of two coplanar gravitating Gaussian rings was solved.…”
Section: Introductionmentioning
confidence: 99%
“…Однако пространственный потенциал эллиптического кольца Гаусса долгое время оставался неизвестным и в общем аналитическом виде принципиально новым методом был получен в работе [4] (см. также [5]):…”
Section: Introductionunclassified
“…, a 1 , e 1 ) в точках второго (повернутого на угол β) внутреннего кольца Гаусса с параметрами (m 2 , a 2 , e 2 ). заданном потенциале ϕ из (24) от первого кольца Гаусса вклад во взаимную гравитационную энергию W mut двух колец от элемента массы второго кольца dm 2 будет равен dW mut = −ϕdm 2 , где[4] …”
unclassified
“…In the general (nondegenerate) case, the spatial potential of the elliptical Gaussian ring was obtained by Kondratyev (2012).…”
Section: Introductionmentioning
confidence: 99%