Given the challenges of re-creating complex bed load (BL) transport processes in rivers, models are preferred over gathering and examining field data. The highlight of the present research is to develop an approach to determine the ungauged bed load concentration (BLC u ) utilizing the measured suspended sediment concentration (SSC) and hydraulic variables of the last four decades for the Mahanadi River Basin. This technique employs shear stress and SSC equations for turbulent open channel flow. Besides, the predicted BLC u is correlated with SSC using a power relation to estimate BLC u on the river and tributaries. Eventually, different BL functions (BLF) efficiency is assessed across stations. The model predicted BLC u is comparable with the published data for sandy rivers and falls within ± 20%. Outliers in hydraulic and sedimentological statistics significantly influence estimating the BL fraction apart from higher relative ratios and catchment geology. The constants of power functions are physically linked to sediment transport configuration, mechanism, and inflow to the stream. The stream power-based BLF best predicts the BL transport, followed by shear stress and unit discharge approaches. The disparity in the estimation of BLC u results from station-specific physical factors, sampling data dispersion, and associated uncertainties.