This study extends earlier reports regarding the in vitro and in vivo efficacies of the nitroimidazopyran PA-824 against Mycobacterium tuberculosis. PA-824 was tested in vitro against a broad panel of multidrugresistant clinical isolates and was found to be highly active against all isolates (MIC < 1 g/ml). The activity of PA-824 against M. tuberculosis was also assessed grown under conditions of oxygen depletion. PA-824 showed significant activity at 2, 10, and 50 g/ml, similar to that of metronidazole, in a dose-dependent manner. In a short-course mouse infection model, the efficacy of PA-824 at 50, 100, and 300 mg/kg of body weight formulated in methylcellulose or cyclodextrin/lecithin after nine oral treatments was compared with those of isoniazid, rifampin, and moxifloxacin. PA-824 at 100 mg/kg in cyclodextrin/lecithin was as active as moxifloxacin at 100 mg/kg and isoniazid at 25 mg/kg and was slightly more active than rifampin at 20 mg/kg. Long-term treatment with PA-824 at 100 mg/kg in cyclodextrin/lecithin reduced the bacterial load below 500 CFU in the lungs and spleen. No significant differences in activity between PA-824 and the other single drug treatments tested (isoniazid at 25 mg/kg, rifampin at 10 mg/kg, gatifloxacin at 100 mg/kg, and moxifloxacin at 100 mg/kg) could be observed. In summary, its good activity in in vivo models, as well as its activity against multidrug-resistant M. tuberculosis and against M. tuberculosis isolates in a potentially latent state, makes PA-824 an attractive drug candidate for the therapy of tuberculosis. These data indicate that there is significant potential for effective oral delivery of PA-824 for the treatment of tuberculosis.Therapy for tuberculosis (TB) is arduous due to its long duration and the need to use multidrug regimens. The current standard regimen of isoniazid (INH), rifampin (RIF), and pyrazinamide (PZA) requires 6 to 8 months of daily treatment. In part due to noncompliance with treatment, therapy is now further complicated by the emergence of drug-resistant strains, with the global prevalence of drug resistance being from 1 to 3% (27). A further, equally important issue with tuberculosis therapy is the treatment of patients in which the infection may be in a latent state. Supposedly, 1:3 people throughout the world harbor latent bacilli, which have the potential to reactivate and cause active disease (21, 23). Current anti-TB drugs are mainly effective against replicating and metabolically active bacteria, and therefore, there is an urgent need for novel drugs that are also effective against persisting or latent bacterial infections, as well as those that can overcome the increasing problem of drug resistance.A series of bicyclic nitroimidazofurans, originally investigated as radiosensitizers for use in cancer chemotherapy (1), were found to possess activity against cultured replicating Mycobacterium tuberculosis and had significant in vivo activity in a murine infection model (3,17,25). A subsequent series of 3-substituted nitroimidazopyrans (NAP...