Visual AbstractSystemic injection of kainate produces repetitive seizure activity in both rats and mice.It also results in short-term synaptic modifications as well as delayed neurodegeneration. The signaling cascades involved in both short-term and delayed responses are not clearly defined. The calcium-dependent protease calpain is activated in various brain structures following systemic kainate injection, although the precise involvement of the two major brain calpain isoforms, calpain-1 and calpain-2, remains to be defined. It has recently been reported that calpain-1 and calpain-2 play opposite roles in NMDA receptor-mediated neuroprotection or neurode-
Significance StatementSeizure activity results in both short-term and long-term alterations in the structure and organization of neurons in hippocampus. While the activation of calpain has been well documented following kainic acid (KA)-induced seizures, there is no information regarding the roles of the two major calpain isoforms in the brain, calpain-1 and calpain-2, in the consequences of seizures. Here we report the surprising findings that, while calpain-2 is rapidly activated in all pyramidal cells of CA1 and CA3, calpain-1 activation is restricted to a small population of interneurons following systemic KA injection. Furthermore, KA-induced neurodegeneration in CA1 is exacerbated in calpain-1 knock-out mice, further supporting the notion that calpain-1 is neuroprotective and calpain-2 is neurodegenerative.
New ResearchJuly/August 2016, 3(4) e0088-15.2016 1-12 generation, with calpain-1 being neuroprotective and calpain-2 being neurodegenerative. In the present study, we determined the activation pattern of calpain-1 and calpain-2 by analyzing changes in levels of different calpain substrates, including spectrin, drebrin, and PTEN (phosphatase and tensin homolog; a specific calpain-2 substrate) in both rats, and wild-type and calpain-1 knock-out mice. The results indicate that, while calpain-2 is rapidly activated in pyramidal cells throughout CA1 and CA3, rapid calpain-1 activation is restricted to parvalbumin-positive and to a lesser extent CCKpositive, but not somatostatin-positive, interneurons. In addition, calpain-1 knock-out mice exhibit increased long-term neurodegeneration in CA1, reinforcing the notion that calpain-1 activation is neuroprotective.