Background: Cardiovascular diseases (CVDs) are the main cause of death in first world countries, being atherosclerosis, a recurring process underlying their apparition. MicroRNAs (miRNAs) are small non-coding RNAs that modulate the expression of their target proteins. Therefore, they have emerged as key players in diseases like cancer, diabetes, or CVDs.Methods: Apolipoprotein E-deficient (ApoE-/-) mice fed a standard type diet (STD) or high fat diet (HFD) for 8 and 18 weeks was compared to wild type (WT) STD-fed groups for the same time. 18 miRNAs were selected (from pubmed and GEO database) for their possible role in promoting atherosclerosis and were analysed by RT-qPCR in the aorta from the experimental model. Afterwards, the altered miRNAs in the aorta from 18 weeks-ApoE-/- mice were studied in human healthy aortic samples, human early aortic atherosclerotic plaques, and human advanced carotid atherosclerotic plaques. Results: From the 18 miRNAs analyzed, miR-155-5p was overexpressed and miR-143-3p was downregulated in mouse and human atherosclerotic lesions. In addition, a significant decrease of protein kinase B (AKT), target of miR-155-5p, and an increase of insulin-like growth factor type II receptor (IGF-IIR), target of miR-143-3p, were noted in aortic roots from ApoE-/- mice and in carotid plaques from ACA patients. Finally, both miRNAs were studied on vascular endothelial and smooth muscle cell lines. The overexpression of miR-155-5p reduced AKT levels and its phosphorylation in vascular smooth muscle cells. MiR-143-3p overexpression decreased IGF-IIR reducing apoptosis in vascular cells. Conclusions: Our results suggest that miR-155-5p and miR-143-3p may be implicated in insulin resistance and plaque instability by the modulation of their targets AKT and IGF-IIR, contributing to the progression of experimental and human atherosclerosis.Trial Registration: authorization numbers PFS09-007 and PI1442016.