Hepatobiliary disease currently serves as an important public health issue due to the fact that it is one of the major causes of death among economically active individuals and can easily progress to chronic diseases. Despite the development of vaccines and numerous drugs, a definite treatment remains lacking owing to different stages of the disease itself, its intricate pathogenesis, an effect uncertainty for long-term use, resistance, and side effects. Curcuma longa (C. longa), which belongs to the family Zingiberaceae and the genus Curcuma, has long been used not only as spice for curry or dye but also as a constituent of herbal formula for the treatment of different diseases due to its bioactive activities. Recently, many studies on the experimental results of C. longa have been published relative to hepatobiliary diseases such as fatty liver, hepatitis, cirrhosis, and tumors. Therefore, in this review, we aimed to summarize the pharmacological effects and underlying molecular mechanisms of C. longa and its four compounds, β-elemene, germacrone, ar-turmerone, and bisacurone, against hepatobiliary diseases. C. longa exhibited antioxidant, hepatoprotective, antisteatotic, anti-inflammatory, antifibrotic, antitumor, and cholagogic effects by regulating apoptosis, CYP2E1, Nrf, lipid metabolism-related factors, TGF-β, NF-κB, CYP7A1, and so on. In particular, β-elemene could be an attractive compound owing to its remarkable hepatoprotective, anti-inflammatory, antifibrotic, and antitumor activities. Altogether, the present review provides a preclinical basis for the efficacy of C. longa as an effective therapeutic agent for the prevention and treatment of hepatobiliary diseases, despite the need for further studies to establish the extraction conditions and separation of active constituents with high bioavailability, and warrants further evaluation in clinical trials.