The nonessential amino acid l-glutamine (Gln) is the most abundant amino acid in plasma. Clinical trials have demonstrated that Gln therapy is safe and improves clinical outcomes in critically ill patients. We have previously shown that Gln protect animals from endotoxic shock through the inhibition of cytosolic phospholipase A2 activity. In this study, we investigated how Gln regulates MAPK activation, as the molecular mechanism underlying Gln-induced cytosolic phospholipase A2 inactivation. Gln rapidly (within 10 min) inactivated p38 and JNK, but not ERK, by dephosphorylating them only when these MAPKs were phosphorylated in response to LPS in vivo as well as in vitro. Western blot analysis revealed that Gln administration resulted in rapid (âŒ5 min) phosphorylation and protein induction of MAP kinase phosphatase-1 (MKP-1). MKP-1 siRNA abrogated the Gln-mediated 1) inactivation of p38 and JNK, 2) induction of MKP-1, and 3) protection against endotoxic shock. The ERK inhibitor U0126 blocked Gln-induced MKP-1 phosphorylation and protein induction, as well as Glnâs protective activity against endotoxic shock. These data suggest that Gln exerts a beneficial effect on endotoxic shock by inactivating p38 and JNK via a rapid induction of MKP-1 protein in an ERK-dependent way.