Despite the availability of combination antiretroviral therapy, at least mild cognitive dysfunction is commonly observed in HIV-infected patients, with an estimated prevalence of 35-70%. Neuropsychological studies of these HIV-associated neurocognitive disorders (HAND) have documented aberrations across a broad range of functional domains, although the basic pathophysiology remains unresolved. Some of the most common findings have been deficits in fine motor control and reduced psychomotor speed, but to date no neuroimaging studies have evaluated basic motor control in HAND. In this study, we used magnetoencephalography (MEG) to evaluate the neurophysiological processes that underlie motor planning in older HIV-infected adults and a matched, uninfected control group. MEG is a noninvasive and direct measure of neural activity with good spatiotemporal precision. During the MEG recording, participants fixated on a central crosshair and performed a finger-tapping task with the dominant hand. All MEG data was corrected for head movements, preprocessed, and imaged in the time-frequency domain using beamforming methodology. All analyses focused on the pre-movement beta desynchronization, which is known to be an index of movement planning. Our results demonstrated that HIV-1-infected patients have deficient beta desynchronization relative to controls within the left/right precentral gyri, and the supplementary motor area. In contrast, HIV-infected persons showed abnormally strong beta responses compared to controls in the right dorsolateral prefrontal cortex and medial prefrontal areas. In addition, the amplitude of beta activity in the primary and supplementary motor areas correlated with scores on the Grooved Pegboard test in HIV-infected adults. These results demonstrate that primary motor and sensory regions may be particularly vulnerable to HIV-associated damage, and that prefrontal cortices may serve a compensatory role in maintaining motor performance levels in infected patients.