Riparian vegetation along urban streams and wetlands is frequently dominated by invasive weeds. Elevated nitrogen and phosphorous in urban waters and soils are well-known to encourage invasive urban weeds, but this research demonstrates that other urban geochemical contaminants may also be influential. Previous studies have demonstrated that the dissolution of urban concrete is a poorly recognised source of modified water and soil geochemistry, which may enhance the growth of some invasive weeds. This study investigated the relationship between urban water quality and the growth of an invasive urban riparian weed, willow (Salix spp.) to examine the contribution of concrete materials. The study used water from a wetland in the Greater Blue Mountains World Heritage Area. These wetlands have a unique biodiversity but are fragile and susceptible to degradation from human activity. Many are in urban catchments and are frequently dominated by invasive weeds, including Salix spp. In this study, willow cuttings were grown in a laboratory using four water treatments: pristine, urban, and pristine water exposed to two different concrete materials. The urban and concrete water treatments had higher pH, salinity, calcium, potassium, and higher concentration of several metals and were associated with increased growth of Salix spp. We suggest that the modification of urban water and riparian soil chemistry by urban concrete materials may contribute to the success of invasive species in urban wetlands and riparian zones. Some metals (barium, strontium) were present in urban water and in pristine water exposed to concrete and bioaccumulated in plant tissue.