Among many disposal options of animal carcasses due to animal diseases including foot-and-mouth disease (FMD) and avian influenza (AI), on-farm burial has been the most frequently used one in Korea. Animal carcasses generate contaminants such as ammonium-N and chloride. This study aimed at testing biochar (BC) as a permeable reactive barrier (PRB) material in combination with fast growing tree species (Populus euramericana) to mitigate groundwater pollution from animal burial sites. For this, a PRB filled with BC was installed and 400 poplar tree (P. euramericana) seedlings were planted. Tested BC was obtained from rice husk and its efficiency to mitigate contaminant migration from a burial site of pig carcasses was tested using ammonium-N, chloride, electrical conductivity (EC), and pH as monitoring parameters. Monitoring wells downstream from the burial site were used. Leachates from a monitoring well, three wells inside the burial site close to PRB and three wells outside the burial site close to PRB were sampled and analyzed for ammonium-N, Cl − , EC, and pH for four years from PRB installation. The pH, EC, and ammonium-N of leachate fluctuated during the test period depending on precipitation. pH, EC, and ammonium-N of the leachate samples collected from outside of the burial site close to PRB decreased compared to those from inside of the burial site close to PRB. The concentrations of ammonium-N in the leachate from the monitoring well kept under the threshold value of 10 mg·L −1 for two years from PRB construction. In addition, the growth of poplar plants appeared to be increased via uptaking available N and P released from the burial sites. Achieved results suggest that BC PRBs can be used to in situ mitigate contaminant release from buried animal carcasses.