Previous studies have revealed that the japonica/indica hybrid rice has a higher yield potential, biomass production, and nitrogen (N) accumulation than japonica rice in China, however, at a single N application rate. It remains unclear whether it also occurs at a higher or lower N application rate under the same field condition. To investigate the effects of nitrogen application rates on grain yield, N uptake, dry matter accumulation, and agronomic N use efficiency, field experiments were conducted in Jinhua City, Zhejiang Province during three consecutive growth seasons in 2016, 2017, and 2018. Two japonica/indica hybrid varieties (Yongyou 12 and Yongyou 538) and two japonica varieties (Xiushui 134 and Jia 58) were exposed to five N application rates (0, 150, 225, 300, and 375 kg ha−1). The results showed that grain yields of all the varieties increased with increasing nitrogen application rates, except for Jia 58 whose optimum nitrogen level was 225 kg ha−1, because no significant difference was observed between N225 and N300. Across the four rice varieties, N uptake increased significantly with increased N-fertilizer rates at all the growth stages (p < 0.05). Across the three planting years, the average grain yield of japonica/indica hybrid rice was higher than that of japonica rice by 75.6% at N0, 57.2% at N150, 41.1% at N225, 38.3% at N300, and 45.8% at N375. We also found that as compared with japonica rice, the japonica/indica hybrid rice had more grain yield, higher dry matter, and higher N uptake at all growth stages, regardless of the N application rate.