Two interference-based subcarrier group assignment strategies in dynamic resource allocation are proposed for MC-CDMA wireless systems to achieve high throughput in a multicell environment. Least interfered group assignment (LIGA) selects for each session the subcarrier group on which the user receives the minimum interference, while best channel ratio group assignment (BCRGA) chooses the subcarrier group with the largest channel response-to-interference ratio. Both analytical framework and simulation model are developed for evaluation of throughput distribution of the proposed schemes. An iterative approach is devised to handle the complex interdependency between multicell interference profiles in the throughput analysis. Illustrative results show significant throughput improvement offered by the interference-based assignment schemes for MC-CDMA multicell wireless systems. In particular, under low loading conditions, LIGA renders the best performance. However, as the load increases BCRGA tends to offer superior performance.