The Small Satellite (SmallSat) industry has recorded incredible growth recently. Within this class, among Mini-, Micro-, and Nanosatellites, the Cube Satellite (CubeSat) is primed for an explosion of growth. These satellites are fascinating for remote sensing, earth observation, and scientific applications. Remarkable attention from the space operators makes it valuable because of its low cost, cubic shape, less manufacturing time, lightweight, and modular structure. Among the various subsystems comprising the SmallSat, the Electrical Power System (EPS) is the most crucial one because unreliable power supply to the rest is most of the time detrimental to the mission. The EPS is formed by electrical sources, storage units, and loads, all interconnected via different power converters, the operation of which must be closely orchestrated to accomplish efficient use of photovoltaic power, optimal battery management, and resilient power delivery. At the same time, the EPS design must address a series of challenges such as size restrictions, high power density, harsh space environments (e.g., atomic oxygen, radiation, and extreme temperatures) which significantly impact the EPS electrical and electronic equipment. In terms of power systems, a SmallSat EPS can be considered a space microgrid owing coordination and control of distributed generation (DG), storage and loads in a small-scale electrical network. From this point of view, this paper reviews and explores SmallSat microgrid's research developments, energy transfer and architectures, converter topologies, latest technologies, main challenges, and some potential solutions which will enable building a more robust, resilient, and efficient EPS. The research gaps and future developments are underlined before the paper is concluded.