Non-orthogonal multiple access (NOMA) technology is projected to significantly increase the spectrum efficiency of the fifth-generation and subsequent wireless networks. Holographic reconfigurable Intelligent surfaces (HRISs) are a revolutionary technology that can deliver excellent spectral and energy efficiency at a cheap cost in wireless networks. In this letter, we investigate the short-packet communication (SPC) with the NOMA-based HRIS system with the internet of things (IoT). A base station (BS) communicates with two NOMA users by using HRIS in the proposed system to enhance spectral efficiency. Furthermore, we derived the exact closed-form expression of the average block error rate (BLER) for two NOMA users. To get more insight into the proposed system, the asymptotic BLER analysis was also carried out at high signal-to-noise ratio regime. The numerical results validate the current analysis and show that the presented NOMA strategy exceeds orthogonal multiple access-based approaches in terms of BLER and throughput.INDEX TERMS Holographic reconfigurable Intelligent surfaces, NOMA, short-packet communication, IoT, BLER.