Some biological experiments report effects that depend on low frequency modulation of a radiofrequency (RF) carrier. Such effects require nonlinear responses in biological preparations, which we show could be observed with great generality by the unique frequency signatures that would appear in the scattered RF energy. Following Illinger [Illinger (1982): Bioelectromagnetics 3:9-16], we considered a two part physical system. The greater part, dominated by the properties of water, interacts linearly with the RF field and is described by equilibrium thermodynamics. However, another, much smaller part, e.g., certain biological molecules and molecular subgroups, supports nonlinear interactions and is described by nonequilibrium thermodynamics. For example, a nonlinear interaction might result from scattering of RF photons from oscillators located in a region of strong field gradients, such as at membrane surfaces. A second nonlinear mechanism could appear if stress (elastic) waves were launched within the confines of the exposure vessel by RF heating. Amplitude modulation at angular frequency Omega of a carrier wave with angular frequency omega (omega << omega) produces two peaks in elastic stress in the cell structure during each period; that is, there is "full-wave demodulation." As a result of coherent nonlinear charge motion, modulation products could appear at frequencies omega +/- 2 omega and, in general, at omega +/- n 2 omega (n = 1, 2, em leader ) if vibrational harmonics at 2 n omega also are excited. Although in principle microwaves can alter the stability of a thermodynamic system by pumping a chemical transition, the degree of nonlinear coupling required for an observable instability is so great that its probability is effectively zero, unless field intensity is extremely high. A companion paper suggests an extremely sensitive method and the related instrumentation for detection of the spectrum scattered by living cells during exposure to amplitude modulated RF energy.