2012
DOI: 10.7763/ijet.2012.v4.403
|View full text |Cite
|
Sign up to set email alerts
|

Power Disturbance Recognition Using Back-Propagation Neural Networks

Abstract: This paper presents power disturbance recognition using back-propagation neural networks (BPNN). First, the discrete wavelet transform is used to extract the features of the power disturbance waveforms in the form of series coefficients of several levels. The Parseval theory is then utilized to calculate the energy of each level so that the number of coefficients can be reduced; then, the extracted results are used for recognition by the BPNN. Multi-event power disturbances are also fed to the recognition syst… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2019
2019
2020
2020

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 4 publications
0
0
0
Order By: Relevance