We apply a generalised logistic growth model, with time dependent parameters, to describe the fatality curves of the COVID-19 disease for several countries that exhibit a second wave of infections. The model parameters vary as a function of time according to a logistic function, whose two extreme values, i.e., for early and late times, characterise the first and second waves, respectively. We show that the theoretical curves are in excellent agreement with the empirical data for all cases considered. The model also allows for predictions about the time of occurrence and relative severity of the second wave, in comparison to the first wave. It is shown furthermore that the COVID-19 second waves can be generically classified in two main types, namely, standard and anomalous second waves, according as to whether the second wave starts well after or still during the first wave, respectively. We have also observed that the standard second waves tend, in their majority, to be more severe than the corresponding first wave, whereas for anomalous second waves the opposite occurs.