In this work we consider the entropy-corrected version of interacting holographic dark energy (HDE), in the non-flat universe enclosed by apparent horizon. Two corrections of entropy so-called logarithmic 'LEC' and power-law 'PLEC' in HDE model with apparent horizon as an IR-cutoff are studied. The ratio of dark matter to dark energy densities u, equation of state parameter w D and deceleration parameter q are obtained. We show that the cosmic coincidence is satisfied for both interacting models. By studying the effect of interaction in EoS parameter, we see that the phantom divide may be crossed and also find that the interacting models can drive an acceleration expansion at the present and future, while in non-interacting case, this expansion can happen only at the early time. The graphs of deceleration parameter for interacting models, show that the present acceleration expansion is preceded by a sufficiently long period deceleration at past.Moreover, the thermodynamical interpretation of interaction between LECHDE and dark matter is described. We obtain a relation between the interaction term of dark components and thermal fluctuation in a non-flat universe, bounded by the apparent horizon. In limiting case, for ordinary HDE, the relation of interaction term versus thermal fluctuation is also calculated. *