2021
DOI: 10.1155/2021/9966395
|View full text |Cite
|
Sign up to set email alerts
|

Power Prediction of Combined Cycle Power Plant (CCPP) Using Machine Learning Algorithm‐Based Paradigm

Abstract: Power prediction is important not only for the smooth and economic operation of a combined cycle power plant (CCPP) but also to avoid technical issues such as power outages. In this work, we propose to utilize machine learning algorithms to predict the hourly-based electrical power generated by a CCPP. For this, the generated power is considered a function of four fundamental parameters which are relative humidity, atmospheric pressure, ambient temperature, and exhaust vacuum. The measurements of these paramet… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
5
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
9
1

Relationship

0
10

Authors

Journals

citations
Cited by 13 publications
(6 citation statements)
references
References 32 publications
0
5
0
1
Order By: Relevance
“…Using the recursive k-means tool ( Miniak-Gorecka, Podlaski & Gwizdalla, submitted ), we divide the response set (EP) into three classes. There are many references to the classification issue related to these data in the literature i.e., ( Saleel, 2021 ; Santarisi & Faouri, 2021 ; Alketbi et al, 2020 ; Siidiqui et al, 2021 ).…”
Section: Experiments and Resultsmentioning
confidence: 99%
“…Using the recursive k-means tool ( Miniak-Gorecka, Podlaski & Gwizdalla, submitted ), we divide the response set (EP) into three classes. There are many references to the classification issue related to these data in the literature i.e., ( Saleel, 2021 ; Santarisi & Faouri, 2021 ; Alketbi et al, 2020 ; Siidiqui et al, 2021 ).…”
Section: Experiments and Resultsmentioning
confidence: 99%
“…Pembangkit Listrik Tenaga Siklus Gabungan (Combined Cycle Power Plant atau CCPP) merupakan pembangkit listrik yang menggunakan kombinasi turbin gas (GT) dan turbin uap (ST) dalam satu siklus untuk menghasilkan listrik. Konsep ini dirancang untuk meningkatkan efisiensi penggunaan bahan bakar dan mengoptimalkan pemanfaatan panas yang dihasilkan dalam proses pembangkit listrik [1]. CCPP merupakan teknologi yang terus berkembang dalam upaya meningkatkan efisiensi konversi energi dari bahan bakar menjadi listrik.…”
Section: Pendahuluanunclassified
“…According to [20,22], K nearest neighbors (K-NN), Linear Regression, and RANSAC regressions can achieve better performance than Simple Linear Regression, Bayesian Linear Regression, Decision Tree, and Gaussian Naïve Bayesian Regression algorithms based on the CCPP dataset. K-NN is a type of instance-based learning where new data points are classified or predicted based on their similarity to the training data.…”
Section: Literature Reviewmentioning
confidence: 99%