2017
DOI: 10.4236/sgre.2017.812024
|View full text |Cite
|
Sign up to set email alerts
|

Power Quality Data Compression Based on Iterative PCA Algorithm in Smart Distribution Systems

Abstract: To reduce the stress of data transmission and storage for power quality (PQ) in smart distribution systems and help PQ analysis, a multichannel data compression based on iterative PCA (principal component analysis) algorithm is introduced. The proposed method uses PCA to reduce the redundancy of data to achieve the purpose of compressing data. In order to improve the calculating speed, an iterative method is proposed to compute the principal components of the covariance matrix. The correctness and feasibility … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
2
0
1

Year Published

2019
2019
2024
2024

Publication Types

Select...
4
1
1

Relationship

0
6

Authors

Journals

citations
Cited by 7 publications
(3 citation statements)
references
References 17 publications
0
2
0
1
Order By: Relevance
“…Em (Abuadbba et al, 2018), aplicam-se a transformada Burrow -Wheeler (BWT) e a aproximação gaussiana para essa finalidade. Em (Zhang et al, 2017), emprega-se um algoritmo iterativo baseado na análise de componentes principais (PCA), como um método de compressão de dados de multicanais de qualidade de potência. Os métodos anteriormente propostos tratam o sinal após sua aquisição.…”
Section: Introductionunclassified
“…Em (Abuadbba et al, 2018), aplicam-se a transformada Burrow -Wheeler (BWT) e a aproximação gaussiana para essa finalidade. Em (Zhang et al, 2017), emprega-se um algoritmo iterativo baseado na análise de componentes principais (PCA), como um método de compressão de dados de multicanais de qualidade de potência. Os métodos anteriormente propostos tratam o sinal após sua aquisição.…”
Section: Introductionunclassified
“…Statistical analysis [39]; • Logistic regression [40]; • Principal component analysis [41]; • K-nearest neighbors method [42]; • Wald's sequential analysis [43];…”
mentioning
confidence: 99%
“…These methods should ensure that a decision on PQI deviation from standard values is made in real time. In this context, the implementation of methods for PQI control based on machine learning [33][34][35][36][37][38][40][41][42] is difficult due to the complex process of simulation modeling of the power supply system of an industrial consumer. Statistical methods [39,43] show great promise.…”
mentioning
confidence: 99%