Generator instability, which manifests as oscillations in frequency and rotor angle, is brought on by sudden disruptions in the power supply. Power System Stabilizer (PSS) and Energy Storage are additional controllers that enhance generator stability. Energy storage types include superconducting magnetic (SMES) and capacitive (CES) storage. If the correct settings are employed, PSS, SMES, and CES coordination can boost system performance. It is necessary to use accurate and effective PSS, SMES, and CES tuning techniques. Artificial intelligence techniques can replace traditional trial-and-error tuning techniques and assist in adjusting controller parameters. According to this study, the PSS, SMES, and CES parameters can be optimized using a method based on particle swarm optimization (PSO). Based on the investigation's findings, PSO executes quick and accurate calculations in the fifth iteration with a fitness function value of 0.007813. The PSO aims to reduce the integral time absolute error (ITAE). With the addition of a load-shedding instance, the case study utilized the Single Machine Infinite Bus (SMIB) technology. The frequency response and rotor angle of the SMIB system are shown via time domain simulation. The analysis's findings demonstrate that the controller combination can offer stability, reducing overshoot oscillations and enabling quick settling times.