Original scientific paperThis paper presented a parallel hybrid electric vehicle (HEV) equipped with a hybrid energy storage system. To handle complex energy flow in the powertrain system of this HEV, a fuzzy-based energy management strategy was established. A chaotic multi-objective genetic algorithm, which optimizes the parameters of fuzzy membership functions, was also proposed to improve fuel economy and HC, CO, and NOx emissions. The main target of this algorithm is to escape from local optima and obtain high quality trade-off solutions. Chaotic initialization operator, chaotic crossover and mutation operators, chaotic disturbance operator, and chaotic local search operator were integrated into non-dominated sorting genetic algorithm II (NSGA-II) to form this new algorithm named chaotic NSGA-II (C-NSGA-II). Simulation results and comparisons demonstrated that chaotic operators can enhance searching ability for optimal solutions. In conclusion, C-NSGA-II is suitable for solving HEV energy management optimization problem.Key words: Chaotic operator, Fuzzy logic, Hybrid electric vehicle, Multi-objective optimization, NSGA-II Neizrazita strategija optimizacije potrošnje energije za paralelno hibridno električno vozilo korištenjem kaotičnog nedominirajućeg genetskog algoritma sortiranja. Ovaj rad prikazuje paralelno hibridno električno vozilo (HEV) opremljeno hibridnim spremnikom energije. Kako bi se omogućila funkcionalnost pogonskog sklopa ovakvog HEV-a korištena je strategija raspolaganja energijom zasnovana na neizrazitoj logici. Takoer, prikazan je više kriterijski genetski algoritam kaosa za optimiranje parametara neizrazite funkcije povezanih s ekonomskim pokazateljem te pokazateljima emisije HC-a, CO-a i NOx-a. Osnovni cilj algoritma je omogućiti izlazak iz lokalnih optimuma i uspostavljanjem kompromisa omogućiti dosezanje boljih rješenja. Kaotični inicijalizacijski operator, kaotično križanje i operator mutacije, kaotični operator poremećaja i kaotični operator lokalnog pretraživanje uključeni su u nedominirajući genetski algoritam sortiranja II (NSGA-II) u svrhu formulacije novog problema nazvanog kaotični NSGA-II (C-NSGA-II). Simulacijski rezultati i usporedbe prikazuju kako kaotični operator može povećati uspješnost traženja optimalnog rješenja. Zaključno, C-NSGA-II je primjeren za rješavanje problema raspolaganja energijom u HEV-u.Ključne riječi: operator kaosa, neizrazita logika, hibridna električna vozila, više kriterijska optimizacija, NSGA-II