The current scenario where the effects of global warming are more and more evident, has motivated different initiatives for facing this, such as the creation of global policies with a clear environmental guideline. Within these policies, the control of Greenhouse Gase (GHG) emissions has been defined as mandatory, but for carrying out this, a smart strategy is proposed. This is the application of a circular economy model, which seeks to minimize the generation of waste and maximize the efficient use of resources. From this point of view, CO2 recycling is an alternative to reduce emissions to the atmosphere, and we need to look for new business models which valorization this compound which now must be considered as a renewable carbon source. This has renewed the interest in known processes for the chemical transformation of CO2 but that have not been applied at industrial level because they do not offer evident profitability. For example, the methane produced in the Sabatier reaction has a great potential for application, but this depends on the existence of a sustainable supply of hydrogen and a greater efficiency during the process that allows maximizing energy efficiency and thermal control to maximize the methane yield. Regarding energy efficiency and thermal control of the process, the use of structured reactors is an appropriate strategy. The evolution of new technologies, such as 3D printing, and the consolidation of knowledge in the structing of catalysts has enabled the use of these reactors to develop a wide range of possibilities in the field. In this sense, the present review presents a brief description of the main policies that have motivated the transition to a circular economy model and within this, to CO2 recycling. This allows understanding, why efforts are being focused on the development of different reactions for CO2 valorization. Special attention to the case of the Sabatier reaction and in the application of structured reactors for such process is paid.