The healthiness and or faultiness of oil-immersed electrical equipment using dissolved gas characterization has remained a critical and challenging task in power systems. Dissolved gas analysis (DGA) continues to be the utmost preferred technique of detecting mainly slow evolving thermal and electrical faults. However, DGA can reveal more than just faults in equipment. This research looks at broad areas where DGA can be applied to determine the healthiness or faultiness of equipment in addition to fault identification. In equipment considered normal—i.e., fault-free—DGA can give the degree of healthiness (DOH) based on Rogers ratios C2H2/C2H4 < 0.1, 0.1 < CH4/H2 < 1, and C2H4/C2H6 < 1, plus the 3 < CO2/CO < 10 ratio for identifying fault-free devices. This answers the question: How healthy or normal is the equipment? Similarly, when these ratios are violated, it signifies the presence of faults, and two things ought to be determined. One is to identify the type of fault(s), which has been the norm. The other thing that can be evaluated is the degree of faultiness (DOF), based on the extent to which the ratios have been violated. Rarely has this been done. This might answer the question for the same fault class: How severe is the fault? To synthesize the DOH and/or DOF, fuzzy logic is applied. To diagnose faults, fuzzy logic and fuzzy-evidential tools are proposed. The accuracy and effectiveness of the proposed fuzzy techniques are better than those of the IEC60599 and Rogers methods, and they are comparable to those of the Duval Triangle 1 and Pentagon 1 methods using the six IEC faults. Results from DOF evaluation have shown electrical faults to be more impactful relative to the rest.