The paradigm shift of large power systems to renewable and decentralized generation raises the question of future transmission and flexibility requirements. In this work, the German power system is brought to focus through a power transmission grid model in a high spatial resolution considering the high voltage (110 kV) level. The fundamental questions of location, type, and size of future storage units are addressed through a linear optimal power flow using today’s power grid capacities and a generation portfolio allowing a 66% generation share of renewable energy. The results of the optimization indicate that for reaching a renewable energy generation share of 53% with this set-up, a few central storage units with a relatively low overall additional storage capacity of around 1.6 GW are required. By adding a constraint of achieving a renewable generation share of at least 66%, storage capacities increase to almost eight times the original capacity. A comparison with the German grid development plan, which provided the basis for the power generation data, showed that despite the non-consideration of transmission grid extension, moderate additional storage capacities lead to a feasible power system. However, the achievement of a comparable renewable generation share provokes a significant investment in additional storage capacities.