Signaling events leading to mammalian sperm capacitation rely on activation/deactivation of proteins by phosphorylation. This cascade includes soluble adenylyl cyclase, an atypical bicarbonate-stimulated adenylyl cyclase, and is mediated by protein kinase A and the subsequent stimulation of protein tyrosine phosphorylation. Recently, it has been proposed that the capacitation-associated increase in tyrosine phosphorylation is governed by Src tyrosine kinase activity. This conclusion was based mostly on the observation that Src is present in sperm and that the Src kinase family inhibitor SU6656 blocked the capacitation-associated increase in tyrosine phosphorylation. Results in the present manuscript confirmed these observations and provided evidence that these inhibitors were also able to inhibit protein kinase A phosphorylation, sperm motility, and in vitro fertilization. However, the block of capacitation-associated parameters was overcome when sperm were incubated in the presence of Ser/Thr phosphatase inhibitors such as okadaic acid and calyculin-A at concentrations reported to affect only PP2A. Altogether, these data indicate that Src is not directly involved in the observed increase in tyrosine phosphorylation. More importantly, this work presents strong evidence that capacitation is regulated by two parallel pathways. One of them requiring activation of protein kinase A and the second one involving inactivation of Ser/Thr phosphatases.The capacitation process is the major prerequisite for mammalian sperm to fertilize. This highly complex phenomenon occurs in the female reproductive tract, and renders the spermatozoa capable of binding and fusing with the oocyte (1). The commonly accepted end point of capacitation is the time when sperm have obtained the ability to fertilize an egg. However, different physiological modifications of sperm have been correlated with the capacitated state. These include: cholesterol loss from the sperm plasma membrane, increased membrane fluidity, changes in intracellular ion concentrations (2), hyperpolarization of the sperm plasma membrane (3), and increased protein tyrosine phosphorylation (4).Among ion fluxes that occur during capacitation, the transport of HCO 3 Ϫ into sperm promotes cAMP synthesis by the activation of an atypical soluble adenylyl cyclase (SACY) 2 (5) and subsequent PKA activation. cAMP-dependent phosphorylation of Ser/Thr residues is known to be a key regulator of tyrosine phosphorylation events linked to the process of capacitation. In mouse sperm exposed to HCO 3 Ϫ , cAMP rises to a maximum in Ͻ60 s, followed immediately by an increase in PKA-dependent phosphorylation (2). However, tyrosine phosphorylation is only observed after incubations for at least 30 min in conditions conducive to capacitation (6). Despite the lack of temporal correlation of PKA-induced phosphorylation and the increase in tyrosine phosphorylation, it has been shown that PKA inhibition blocks the onset of tyrosine phosphorylation (7). The one or more tyrosine kinases responsible f...