In the present study, the applicability of thermal barrier coatings (TBCs) on g-TiAl alloys was investigated. Two alloys with the chemical compositions of Ti-45Al-8Nb-0.2B-0.15C and Ti-45Al-1Cr-6Nb-0.4W-0.2B-0.5C-0.2Si were used. Before TBC deposition, the specimens were pre-oxidised in laboratory air or low partial pressure oxygen atmosphere. Yttria partially stabilised zirconia top coats were then deposited using electron-beam physical vapour deposition (EB-PVD). The oxidation behaviour of the g-TiAl specimens with TBC was studied by cyclic oxidation testing in air at 850 and 900 8C. Post-oxidation analysis of the coating systems was performed using scanning electron microscopy with energy-dispersive X-ray spectroscopy (EDS). No spallation of the TBC was observed for pre-oxidised specimens of both alloys when exposed to air at 850 8C for 1100 cycles of 1 h dwell time at high temperature. SEM micrographs of the thermally grown oxide scale revealed outer mixed TiO 2 /Al 2 O 3 protrusions with a columnar structure. The protrusions contained small particles of zirconia and a low amount of about 0.5 at% zirconium was measured by EDS analysis throughout this outer oxide mixture. The TBCs exhibited excellent adherence on the oxide scale. Intercolumnar gaps and pores in the root area of the TBC were filled with titania and alumina. Below the outer columnar oxide scale, a broad porous zone of predominant titania was observed. The transition region between the oxide scale and substrate consisted of a discontinuous nitride layer intermixed with alumina particles and intermetallic phases rich in niobium formed at the nitride layer/substrate interface. When thermally cycled at 900 8C, the oxide scales on the alloy Ti-45Al-8Nb-0.2B-0.15C pre-oxidised in low partial pressure oxygen spalled off after 540 cycles. For the sample with TBC, spallation was observed after 810 cycles. Failure occurred in the thermally grown oxide near the oxide/nitride layer interface. Microstructural examinations revealed again oxide scales with columnar structure beneath the zirconia top coat and good adherence of the TBC on the thermally grown oxides formed at 900 8C.