The binding and release capabilities of a hydrogel series, constructed of hydrophilic poly(ethylene glycol) segments and hydrophobic dendritic junctions [poly (benzyl ether)s], are evaluated in aqueous media. The environmental response of the amphiphilic networks is also tested in water at three pH values: 1.5, 7.0, and 10.1. The highest swelling ratio is observed under acidic conditions and varies between 3.7 and 6.5, depending on the crosslinking density and dendrimer generation. Gel specimens with embedded indicators react within 3–6 s with a clear color switch to the change in the pH of the surrounding medium. The experiments with model anionic and cationic indicators and stains show that the hydrogels have basic interiors. The gel binding capabilities depend on the water solubility of the substrate and on the size of the incorporated dendritic fragments. Model release studies have been performed at 37 °C and pHs 1.5, 7.0, and 10.1. The observed phenomena are explained by the transformations in the structure and charge that both the networks and the model compounds undergo with the changes in the pH of the aqueous medium. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4017–4029, 2005