Background: Standardized reporting of continuous glucose monitoring (CGM) metrics does not provide extra weighting for very high or very low glucose, despite their distinct clinical significance, and thus may underestimate glycemic risk in people with type 1 diabetes (T1D) during exercise. Glycemia Risk Index (GRI) is a novel composite metric incorporating clinician-validated extra weighting for glycemic extremes, which may provide a novel summary index of glycemia risk around exercise. Methods: Adults (≥18 years) in the T1D EXercise Initiative study wore CGM and activity trackers for four weeks. For this analysis, exercise days were defined as 24 hours following ≥20 minutes of exercise, with no other exercise in the 24-hour period. Sedentary days were defined as any 24 hours with no recorded exercise within that period or the preceding 24 hours. Linear mixed-effects regression was used to evaluate exercise effects on GRI and CGM metrics within 24 hours postexercise. Results: In 408 adults with T1D with >70% CGM and activity data, GRI on exercise (N = 3790) versus sedentary days (N = 1865) was significantly lower (mean [SD]: 29.9 [24.0] vs 34.0 [26.1], respectively, absolute mean difference −1.70 [−2.73, −0.67], P < .001), a ~5% reduction in glycemic risk. Percent time in range (TIR; 70-180 mg/dL) increased on exercise days (absolute mean difference 2.67 [1.83, 3.50], P < .001), as did time below range (TBR; relative mean difference 1.17 [1.12, 1.22], P < .001), while time above range (TAR) decreased (relative mean difference 0.84 [0.79, 0.88], P < .001). Conclusions: Glycemia Risk Index improved on exercise versus sedentary days, despite increased TBR, which is weighted most heavily in the GRI calculation, due to a robust reduction in TAR.