In continuous-variable tomography, with finite data and limited computation resources, reconstruction of a quantum state of light is performed on a finite-dimensional subspace. In principle, the data themselves encode all information about the relevant subspace that physically contains the state. We provide a straightforward and numerically feasible procedure to uniquely determine the appropriate reconstruction subspace by extracting this information directly from the data for any given unknown quantum state of light and measurement scheme. This procedure makes use of the celebrated statistical principle of maximum likelihood, along with other validation tools, to grow an appropriate seed subspace into the optimal reconstruction subspace, much like the nucleation of a seed into a crystal. Apart from using the available measurement data, no other assumptions about the source or preconceived parametric model subspaces are invoked. This ensures that no spurious reconstruction artifacts are present in state reconstruction as a result of inappropriate choices of the reconstruction subspace. The procedure can be understood as the maximum-likelihood reconstruction for quantum subspaces, which is an analog to, and fully compatible with that for quantum states.