This paper provides a proof of concept for a linear electric generator that can be used to harvest energy from various sources of linear motion, such as vibrations, free-piston engines and wave energy. The generator can be used to power small electronic devices, such as sensors, or charge household batteries. Literature was reviewed to develop an understanding about the applications, control methods, excitation methods and mechanics of rotating and linear electric machines. A bidirectional, two-sided linear machine was designed with two stator cores and a single mover core. The stator windings and mover winding can be independently excited, allowing for three modes: no mover excitation, DC excited mover, and AC excited mover.
Simulations results showed that the magnetic flux generated by DC excited stator cores were concentrated in the centre of the mover core. The use of two stator cores eliminates lateral flux in the mover core when it is not excited, minimising attraction and repulsion forces. Parametric analysis showed that flux cutting occurred in all operation modes, verifying that the generator will produce power when operating. Hardware tests produced an output current when the machine is electrically and mechanically excited, verifying the proposed design.