Mesenchymal stem cells (MSCs) have emerged as a promising cellular vehicle for gene therapy of malignant gliomas due to their property of tumor tropism. However, MSCs may show bidirectional and divergent effects on tumor growth. Therefore, a robust surveillance system with a capacity for noninvasive monitoring of the homing, distribution and fate of stem cells in vivo is highly desired for developing stem cell-based gene therapies for tumors. In this study, we used ferritin gene-based magnetic resonance imaging (MRI) to track the tumor tropism of MSCs in a rat orthotopic xenograft model of malignant glioma. MSCs were transduced with lentiviral vectors expressing ferritin heavy chain (FTH) and enhanced green fluorescent protein (eGFP). Intra-arterial, intravenous and intertumoral injections of these FTH transgenic MSCs (FTH-MSCs) were performed in rats bearing intracranial orthotopic C6 gliomas. The FTH-MSCs were detected as hypointense signals on T2- and T2*-weighted images on a 3.0 T clinical MRI. After intra-arterial injection, 17% of FTH-MSCs migrated toward the tumor and gradually diffused throughout the orthotopic glioma. This dynamic process could be tracked in vivo by MRI up to 10 days of follow-up, as confirmed by histology. Moreover, the tumor tropism of MSCs showed no appreciable impact on the progression of the tumor. These results suggest that FTH reporter gene-based MRI can be used to reliably track the tropism and fate of MSCs after their systemic transplantation in orthotopic gliomas. This real-time in vivo tracking system will facilitate the future development of stem cell-based therapies for malignant gliomas.