Abstract:The grand goal of Machine Learning is to develop software which can learn from previous experience-similar to how we humans do. Ultimately, to reach a level of usable intelligence, we need (1) to learn from prior data, (2) to extract knowledge, (3) to generalize-i.e., guessing where probability function mass/density concentrates, (4) to fight the curse of dimensionality, and (5) to disentangle underlying explanatory factors of the data-i.e., to make sense of the data in the context of an application domain. To address these challenges and to ensure successful machine learning applications in various domains an integrated machine learning approach is important. This requires a concerted international effort without boundaries, supporting collaborative, cross-domain, interdisciplinary and transdisciplinary work of experts from seven sections, ranging from data pre-processing to data visualization, i.e., to map results found in arbitrarily high dimensional spaces into the lower dimensions to make it accessible, usable and useful to the end user.