A trace amount of thrombin cleaves factor VIII (FVIII) into an active form (FVIIIa), which catalyzes FIXa-mediated activation of FX on the activated platelet surface. FVIII rapidly binds to von Willebrand factor (VWF) after secretion and becomes highly concentrated via VWF-platelet interaction at a site of endothelial inflammation or injury. Circulating levels of FVIII and VWF are influenced by age, blood type (nontype O > type O), and metabolic syndromes. In the latter, hypercoagulability is associated with chronic inflammation (known as thrombo-inflammation). In acute stress including trauma, releasable pools of FVIII/VWF are secreted from the Weibel-Palade bodies in the endothelium and then augment local platelet accumulation, thrombin generation, and leukocyte recruitment. Early systemic increases of FVIII/VWF (>200% of normal) levels in trauma result in a lower sensitivity of contact-activated clotting time (activated partial thromboplastin time [aPTT] or viscoelastic coagulation test [VCT]). However, in severely injured patients, multiple serine proteases (FXa plasmin and activated protein C [APC]) are locally activated and may be systemically released. Severity of traumatic injury correlates with prolonged aPTT and elevated activation markers of FXa, plasmin, and APC, culminating in a poor prognosis. In a subset of acute trauma patients, cryoprecipitate that contains fibrinogen, FVIII/VWF, and FXIII is theoretically advantageous over purified fibrinogen concentrate to promote stable clot formation, but comparative efficacy data are lacking. In chronic inflammation or subacute phase of trauma, elevated FVIII/VWF contributes to the pathogenesis of venous thrombosis by enhancing not only thrombin generation but also augmenting inflammatory functions.