2013
DOI: 10.1007/bf03340854
|View full text |Cite
|
Sign up to set email alerts
|

Präventives Retourenmanagement im eCommerce

Abstract: Präventives Retourenmanagement im eCommerceDas wachsende Business-to-Consumer-Geschäft im eCommerce erhöht auch die Problematik der Verbraucherretouren für viele Onlinehändler. Oftmals werden Retouren durch den Verbraucher aufgrund von »Nichtgefallen« konkludent retourniert und verursachen dadurch Kosten in der Handhabung, die die Ertragssituation der Onlinehändler negativ beeinflussen können. Im vorliegenden Beitrag wird aufgezeigt, wie durch den Einsatz von Big Data Retourenquoten gesenkt werden können. Big … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2015
2015
2023
2023

Publication Types

Select...
3
2

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(1 citation statement)
references
References 1 publication
0
1
0
Order By: Relevance
“…This field is even more important because it meets both customer behaviour and the sustainability concept, as well as helping to easily understand the facets appearing in big data analysis. For instance, if an organisation wants to use online customer reviews (unstructured textual data) to predict the product returns probability (Schmidt and Möhring, 2013; Möhring et al , 2013), past customer order data from the CRM and ERP system (structured data) as well as images (unstructured image data) from offered goods should also be integrated into the analysis to enhance the quality of the prediction. Therefore, they must apply different methods like text mining for textual data, image pattern recognition for images and traditional data mining techniques like regression or correlation analysis.…”
Section: Theoretical Backgroundmentioning
confidence: 99%
“…This field is even more important because it meets both customer behaviour and the sustainability concept, as well as helping to easily understand the facets appearing in big data analysis. For instance, if an organisation wants to use online customer reviews (unstructured textual data) to predict the product returns probability (Schmidt and Möhring, 2013; Möhring et al , 2013), past customer order data from the CRM and ERP system (structured data) as well as images (unstructured image data) from offered goods should also be integrated into the analysis to enhance the quality of the prediction. Therefore, they must apply different methods like text mining for textual data, image pattern recognition for images and traditional data mining techniques like regression or correlation analysis.…”
Section: Theoretical Backgroundmentioning
confidence: 99%