Sudden increases in the background gamma-radiation dose may occur due to the removal of (222)Rn and (220)Rn progeny from the atmosphere by wet deposition mechanisms. This contribution has been measured using a Geiger-Muller detector at the Atomic Weapons Establishment (Aldermaston, UK) during July 2005-April 2006. The results are approximated by a log-normal distribution and there were nine separate occurrences of the gamma-radiation dose exceeding 125% of the geometric mean value. The increases were associated with periods of heavy rainfall, although no correlation was evident between the dose rate and the amount of rainfall, as increased rainfall dilutes the activity further rather than increasing its atmospheric removal. The events were preceded by periods of fine weather and atmospheric stability that allow for the build-up of (222)Rn and (220)Rn progeny. Similar increases in gamma-radiation dose have been measured at a nearby monitoring station situated approximately 11 miles from Aldermaston. Increases in gamma-radiation dose during heavy rainfall have also been observed throughout the UK, that followed the trajectory of an air mass. All events decreased to typical values within 1-2 h as the water permeated into the ground below and the radioactivity decayed away.