Cytomegalovirus (CMV) infection constitutes a complication for kidney transplant recipients (KTR) and CMV‐specific T cells reduce the risk of viral replication in seropositive patients. CMV promotes the adaptive differentiation and expansion of an NK cell subset, hallmarked by expression of the CD94/NKG2C receptor with additional characteristic features. We previously reported an association of pretransplant NKG2C+ NK cells with a reduced incidence of CMV infection. We have strengthened the analysis in cryopreserved peripheral blood mononuclear cells from an enlarged KTR cohort (n = 145) with homogeneous immunosuppression, excluding cases at low risk of infection (ie, CMV D−R−) or receiving antiviral prophylaxis. Moreover, adaptive NKG2C+ NK cell–associated markers (ie, NKG2A, CD57, Immunoglobulin‐like transcript 2 [LIR1 or LILRB1], FcεRI γ chain, and Prolymphocytic Leukemia Zinc Finger transcription factor) as well as T lymphocyte subsets were assessed by multicolor flow cytometry. The relation of NKG2C+ NK cells with T cells specific for CMV antigens was analyzed in pretransplant patients (n = 29) and healthy controls (n = 28). Multivariate Cox regression and Kaplan‐Meier analyses supported that NKG2C+ NK cells bearing adaptive markers were specifically associated with a reduced incidence of posttransplant symptomatic CMV infection; no correlation between NKG2C+ NK cells and CMV‐specific T cells was observed. These results support that adaptive NKG2C+ NK cells contribute to control CMV infection in KTR.