2018
DOI: 10.3390/met8030168
|View full text |Cite
|
Sign up to set email alerts
|

Precipitation and Grain Size Effects on the Tensile Strain-Hardening Exponents of an API X80 Steel Pipe after High-Frequency Hot-Induction Bending

Abstract: Abstract:This study discusses the use of the Morrison model to estimate the strain-hardening exponent (n) in the presence of precipitation hardening for an API X80 steel pipe. As the grain size becomes larger, high values of n are expected according to the Morrison equation. However, the grain size alone is not sufficient to explain the changes of the strain-hardening exponent (n) after hot-induction bending. The vanadium in the ferritic solid solution has an important influence on the decrease of the precipit… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

1
15
0
7

Year Published

2018
2018
2024
2024

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 39 publications
(23 citation statements)
references
References 18 publications
1
15
0
7
Order By: Relevance
“…In this context, knowledge of the microstructural and mechanical properties of such materials, as well as the development of accurate design and inspection methodologies is of major importance. Lavigne et al [4] present a comprehensive study of the microstructural and mechanical characterization of API 5L X52 steel; Silva et al [5] discuss the effect of precipitation and grain size on the tensile strain-hardening exponent of API X80 steel; Liu et al [6] analyze the local buckling behavior and plastic deformation capacity of high-strength X80 steel pipelines subjected to strike-slip fault displacements; and Vilkys et al [7] study the influence of mechanical surface defects on the safe operation of gas pipelines on the basis of fragments collected from operating parts.…”
Section: Contributionsmentioning
confidence: 99%
“…In this context, knowledge of the microstructural and mechanical properties of such materials, as well as the development of accurate design and inspection methodologies is of major importance. Lavigne et al [4] present a comprehensive study of the microstructural and mechanical characterization of API 5L X52 steel; Silva et al [5] discuss the effect of precipitation and grain size on the tensile strain-hardening exponent of API X80 steel; Liu et al [6] analyze the local buckling behavior and plastic deformation capacity of high-strength X80 steel pipelines subjected to strike-slip fault displacements; and Vilkys et al [7] study the influence of mechanical surface defects on the safe operation of gas pipelines on the basis of fragments collected from operating parts.…”
Section: Contributionsmentioning
confidence: 99%
“…The logarithm of the plastic part in formula (1) is as follows 14,30 ln s = ln R + nln e ð4Þ Therefore, the hardening index, n can be calculated by formula (5)…”
Section: Resultsmentioning
confidence: 99%
“…To avoid the size effect, the nanoindentation displacement cannot exceed the thickness of a metallographic structure. 13,14 To avoid the influence of roughness effect, the depth of the compression cannot be too small. 15,16 Therefore, 20 mN is selected as the nanoindentation force, under which the metallographic structure performance should be fully reflected.…”
Section: Methodsmentioning
confidence: 99%
“…Apenas a título de curiosidade, a Figura 37 traz os resultados de uma simulação numérica similar para o corpo de prova Charpy, e neste caso nota-se que em torno de apenas 14 J (aproximadamente 4%), de um total de 350 J, destina-se à propagação estável. Moço (2017) ainda conduziu uma análise empregando a mesma metodologia em um anel de duto, desta vez analisando o campo residual de deformações, e como resultado verificou-se que 72% da energia total absorvida pelo duto estava relacionada ao processo de propagação de fratura dúctil. Portanto, apesar de atualmente os espécimes Charpy e DWTT serem considerados como representativos da fratura dúctil de dutos, o uso de ambas as geometrias vem se mostrando insatisfatório para estes fins, haja visto os resultados obtidos por Moço (2017) e pelos demais autores referenciados.…”
Section: Ctod ()unclassified
“…Neste sentido, e de um ponto de vista de engenharia, alguns modelos para previsão de falha em gasodutos, propostos no passado, deixaram de aderir à fenomenologia ocorrente nos materiais atuais, contribuindo para a perda de similitude entre os corpos de prova (Charpy V-Notch) e estruturas reais. Desta maneira, as pesquisas de Moço (2017) e Pereira (2017) disponibilizaram boas práticas de simulação de corpos de prova de impacto e gasodutos, para compreensão do fenômeno de propagação de trincas em materiais de alta tenacidade sob uma perspectiva da resposta carga-deslocamento e de energia. Contudo, um estudo mais detalhado se faz necessário, além de ensaios experimentais para fins de validação numérica e identificação das variáveis mecânicas e microestruturais que impactam diretamente no crack arrest.…”
Section: Introductionunclassified