An attempt to the modification of the microstructure and mechanical properties of affordable, Mn-containing maraging alloys is reported. These alloys have demonstrated strong age hardening but suffered with premature intergranular brittleness despite their potential applications in tooling, dies, and machinery industries. An Fe-10Ni-6Mo-3Mn-1Ti (wt.%) alloy was prepared by vacuum melting and processed by homogenization (1250°C/48 h), cold rolling, solution annealing (950°C/1 h), and aging treatments (500°C/4 h). It presented tensile strength of about 2.65 GPa, a few percent of tensile elongation and a mixed ductile-brittle fracture mode. Transmission electron microscopy (TEM) revealed the precipitation of a nearly spherical phase. Crystal symmetry of the second phase precipitates was identified hexagonal closepacked corresponding reasonably to the Fe 2 Mo Laves phase having lattice parameters of a = 0.4745 and c = 0.7754 nm. Precipitation of a Mo-enriched second-phase particle was occasionally found at prior austenite grain boundaries but the pronounced grain boundary precipitation was never identified. Energyfiltering transmission electron microscopy using the Mo-M 4,5 post edge revealed remarkable segregation of Mo at grain boundaries.