Cancers of the endocrine system are rare. The majority are not highly malignant tumors. Thyroid cancer (TC) is the most common endocrine cancer, with differentiated papillary and follicular tumors occurring more frequently than the more aggressive poorly differentiated and anaplastic TC. Nanoparticles (NP) (mainly mesoporous silica, gold, carbon, or liposomes) have been developed to improve the detection of biomarkers and routine laboratory parameters (e.g., thyroid stimulating hormone, thyroglobulin, and calcitonin), tumor imaging, and drug delivery in TC. The majority of drug-loaded nanocarriers to be used for treatment was developed for anaplastic tumors because current treatments are suboptimal. Further, doxorubicin, sorafenib, and gemcitabine treatment can be improved by nanotherapy due to decreased adverse effects. Selective delivery of retinoic acid to TC cells might improve the re-differentiation of de-differentiated TC. The use of carbon NPs for the prevention of parathyroid damage during TC surgery does not show a clear benefit. Certain technologies less suitable for the treatment of deeply located cancers may have some potential for unresectable anaplastic carcinomas, namely those based on low-intensity focused ultrasound and near-infrared irradiation. Although some of these approaches yielded promising results in animal studies, results from clinical trials are currently lacking.