Vitamin D-deficient rats were irradiated with u.v. light three times weekly for 30 min for several weeks. D3 (cholecalciferol) and 25(OH)D3 (25-hydroxycholecalciferol) concentrations in skin, plasma, muscle and adipose tissue were measured. In other experiments, isolated skin or the whole animal was irradiated once and the cholecalciferol response monitored. Only a small fraction of the 7-dehydrocholesterol in skin is converted into D3 (less than 2%), and the presence of fur decreases the proportion converted into 20% of that occurring in shaved rat skin. D3 formed in the skin disappears relatively slowly, so that about 90% has gone after 7 days. In normal rats 10 micrograms of D3 formed over 2 h irradiation only caused a small rise in plasma D3 concentration over the following week, indicative of a high rate of clearance from this tissue. Irradiation of vitamin D-deficient rats for a prolonged period raised plasma D3 and 25(OH)D3 concentrations to a constant value. D3, but not 25(OH)D3, could be found in adipose tissue and muscle. Prolonged irradiation of normal rats showed these tissues and plasma could hold very large amounts of D3. Pharmacokinetic analysis of the changes in D3 concentration in rats showed that the disposition kinetics of D3 was explained by a two-compartment model with half-lives of 13.8 and 7.7 days. The volume of distribution of the more-slowly-turning-over compartment was 500 ml, which presumably reflects the large amounts of D3 that can accumulate in adipose tissue. Rat skin can synthesize about 0.85 ng of D3/mJ of u.v. light energy, but it seems that not all this is available to the rat. Adipose-tissue D3 is available for use by the rat, the t1/2 being 12.0 days.