There are many situations in which it is desirable to use a Local Positioning System (LPS), which constitutes a complete and independent unit, offers high accuracy and in addition is economical to realize. This paper describes the LPS LOSNUS (Localization of Sensor Nodes by Ultra Sound). LOSNUS is a complete and independent LPS where the same system can be used for localization and calibration. Primarily designed for locating numerous quasi-static devices, special care of system construction has taken on costly factors, especially in the construction of the infrastructure and of sensor nodes where locating can be realized with minimal additional hardware costs. LOSNUS enables a calibration process without the need of additional expensive tools and/or laborious time in order to get accurate positions of transmitters. As a result, LOSNUS delivers high locating accuracy at medium update rates, and in case of sufficient number of transmitters can also tolerate single failures in the Time of Arrival (ToA) measurement, allowing arbitrary failure modes. In this article, the system is presented starting from design, realization and algorithms of localization and calibration. Finally, new measurement results are showing the high accuracy of localization based on a discussion of the applied uncertainty description.