To have information about the soybean productivity over the crop years is essential to define strategies to increase profits and reduce costs and most important to reduce environmental impacts. One form of monitoring is the use of Geostatistical methods, which allow us to obtain maps with more accurate predictions. In this paper, an area of 127.16 ha was studied during six crop years between 2012/2013 and 2017/2018. We found that productivity values vary between crop years, mainly due to uncontrollable climatic factors. The removal of influential points caused changes in the predicted values showed in the maps, and the use of scaled semivariograms allowed us to obtain similar maps to those obtained considering the model without influential points, then there was no need to exclude observations. The use of a model with replicates helped to identify regions where productivity was lower. The use of explanatory variables allowed us to elaborate a more accurate thematic map in the 2017/2018 crop year, which was well evidenced by the prediction standard error map.