Volatile compounds in cod fillets packed in Styrofoam boxes were analyzed during chilled storage (0.5 degrees C) by gas chromatography (GC)-mass spectrometry and GC-olfactometry to screen potential quality indicators present in concentrations high enough for detection by an electronic nose. Photobacterium phosphoreum dominated the spoilage bacteria on day 12 when the fillets were rejected by sensory analysis. Ketones, mainly 3-hydroxy-2-butanone, were detected in the highest level (33%) at sensory rejection, followed by amines (TMA) (29%), alcohols (15%), acids (4%), aldehydes (3%), and a low level of esters (<1%). The electronic nose's CO sensor showed an increasing response with storage time coinciding with the production of ethanol and 2-methyl-1-propanol that were produced early in the storage, followed by the production of 3-methyl-1-butanol, 3-methyl-butanal, 2,3-butandiol, and ethyl acetate. Lipid-derived aldehydes, like hexanal and decanal, were detected in similar levels throughout the storage time and contributed to the overall sweet odors of cod fillets in combination with other carbonyls (3-hydroxy-2-butanone, acetaldehyde, 2-butanone, 3-pentanone, and 6-methyl-5-heptene-2-one).