Fungal growth on rubber sheets confers inferior properties and an unpleasant odor to raw natural rubber (NR) and products made from it, and it causes environmental concerns. The purpose of the present work was to investigate the effects of Aquilaria crassna wood (ACW) on the antifungal, physical and mechanical properties of NR as air-dried sheets (ADS) and ADS filled with ACW. The results show that the ACW-filled ADS had an increased Mooney viscosity, initial plasticity (PO), and high thermo-oxidation plasticity (i.e., high plasticity retention index PRI). Additionally, superior green strength was observed for the ACW-filled ADS over the ADS without additive because of chemical interactions between lignin and proteins in NR molecules eliciting greater gel formation. A significant inhibition of fungal growth on the NR products during storage over a long period (5 months) was observed for ACW-filled ADS. Thus, it can be concluded that ACW could be applied as an antifungal additive that reduces fungal growth. This is a practically important aspect for the rubber industry, as fungal growth tends to spoil and cause the loss of NR sheets during storage. Moreover, the ACW is active as an incense agent, reducing negative impacts from odors that fungi, on rubber surfaces, release. Therefore, these filled intermediate NR products provide added value through, an environmentally friendly approach, this is pleasant to customers.