“…In parallel with the development of scaffold optimization tools, equally important is a rich availability of scaffold fabrication techniques and biopolymer choices, both of which promote parametric control for optimizations. Some recent developments in the graft fabrication include: 1) Shortening the production time for cell sheet self-assembly method ( von Bornstädt et al, 2018 ); 2) loading drugs, anti-thrombogenic or pro-regenerative molecules for electrospun grafts or 3D printed grafts ( Zhang et al, 2019 ; Domínguez-Robles et al, 2021 ); 3) refining decellularization protocols for reduced immunological responses ( Schneider et al, 2018 ; Valencia-Rivero et al, 2019 ; Kimicata et al, 2020 ; Lopera Higuita et al, 2021 ); 4) improving the precision of pore generation in scaffold ( Zhen et al, 2021 ); 5) enhancing recellularization for allogenic or xenogenic decellularized grafts ( Dahan et al, 2017 ; Lin et al, 2019 ; Fayon et al, 2021 ); 6) expediting degradation with scaffold composition ( Fukunishi et al, 2021 ) or textile technique ( Fukunishi et al, 2019 ) to enhance matrix remodeling; 7) mimicking the structure and/or composition of vascular ECM using electrochemical fabrication ( Nguyen et al, 2018 ) or an automated technology combining dip-spinning with solution blow spinning ( Akentjew et al, 2019 ); 8) creating patient-specific grafts ( Fukunishi et al, 2017 ); and 9) hybrid approaches, for example, combining electrospinning with decellularized matrices ( Gong et al, 2016 ; Ran et al, 2019 ; Wu et al, 2019 ; Yang et al, 2019 ).…”